初中数学教案

来源:教育在线

初中是学生的一个关键阶段,这时初中教师要把好关,设计好每天的教案,提高学生的学习成绩。以下是小编分享给大家的初中数学教案的资料,希望可以帮到你!


(相关资料图)

初中数学教案一

从分数到分式

一、 教学目标

1. 了解分式、有理式的概念.

2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.

二、重点、难点

1.重点:理解分式有意义的条件,分式的值为零的条件.

2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.

3.认知难点与突破方法

难点是能熟练地求出分式有意义的条件,分式的值为零的条件.突破难点的方法是利用分式与分数有许多类似之处,从分数入手,研究出分式的有关概念,同时还要讲清分式与分数的联系与区别.

三、例、习题的意图分析

本章从实际问题引出分式方程 = ,给出分式的描述性的定义:像这样分母中含有字母的式子属于分式. 不要在列方程时耽误时间,列方程在这节课里不是重点,也不要求解这个方程.

1.本节进一步提出P4[思考]让学生自己依次填出: , , , .为下面的[观察]提供具体的式子,就以上的式子 , , , ,有什么共同点?它们与分数有什么相同点和不同点?

可以发现,这些式子都像分数一样都是 (即A÷B)的形式.分数的分子A与分母B都是整数,而这些式子中的A、B都是整式,并且B中都含有字母.

P5[归纳]顺理成章地给出了分式的定义.分式与分数有许多类似之处,研究分式往往要类比分数的有关概念,所以要引导学生了解分式与分数的联系与区别.

希望老师注意:分式比分数更具有一般性,例如分式 可以表示为两个整式相除的商(除式不能为零),其中包括所有的分数 .

2. P5[思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零.注意只有满足了分式的分母不能为零这个条件,分式才有意义.即当B≠0时,分式 才有意义.

3. P5例1填空是应用分式有意义的条件—分母不为零,解出字母x的值.还可以利用这道题,不改变分式,只把题目改成“分式无意义”,使学生比较全面地理解分式及有关的概念,也为今后求函数的自变量的取值范围,打下良好的基础.

4. P12[拓广探索]中第13题提到了“在什么条件下,分式的值为0?”,下面补充的例2为了学生更全面地体验分式的值为0时,必须同时满足两个条件:○1分母不能为零;○2分子为零.这两个条件得到的解集的公共部分才是这一类题目的解.

四、课堂引入

1.让学生填写P4[思考],学生自己依次填出: , , , .

2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?

请同学们跟着教师一起设未知数,列方程.

设江水的流速为x千米/时.

轮船顺流航行100千米所用的时间为 小时,逆流航行60千米所用时间 小时,所以 = .

3. 以上的式子 , , , ,有什么共同点?它们与分数有什么相同点和不同点?

五、例题讲解

P5例1. 当x为何值时,分式有意义.

[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解

出字母x的取值范围.

[提问]如果题目为:当x为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.

(补充)例2. 当m为何值时,分式的值为0?

(1) (2) (3)

[分析] 分式的值为0时,必须同时满足两个条件:○1分母不能为零;○2分子为零,这样求出的m的解集中的公共部分,就是这类题目的解.

[答案] (1)m=0 (2)m=2 (3)m=1

六、随堂练习

1.判断下列各式哪些是整式,哪些是分式?

9x+4, , , , ,

2. 当x取何值时,下列分式有意义?

(1) (2) (3)

3. 当x为何值时,分式的值为0?

(1) (2) (3)

七、课后练习

1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?

(1)甲每小时做x个零件,则他8小时做零件 个,做80个零件需 小时.

(2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.

(3)x与y的差于4的商是 .

2.当x取何值时,分式 无意义?

3. 当x为何值时,分式 的值为0?

八、答案:

六、1.整式:9x+4, , 分式: , ,

2.(1)x≠-2 (2)x≠ (3)x≠±2

3.(1)x=-7 (2)x=0 (3)x=-1

七、1.18x, ,a+b, , ; 整式:8x, a+b, ;

分式: ,

2. X = 3. x=-1

初中数学教案二

分式的基本性质

一、教学目标

1.理解分式的基本性质.

2.会用分式的基本性质将分式变形.

二、重点、难点

1.重点: 理解分式的基本性质.

2.难点: 灵活应用分式的基本性质将分式变形.

3.认知难点与突破方法

教学难点是灵活应用分式的基本性质将分式变形. 突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形.

三、例、习题的意图分析

1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.

2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.

教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.

3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.

“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.

四、课堂引入

1.请同学们考虑: 与 相等吗? 与 相等吗?为什么?

2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据?

3.提问分数的基本性质,让学生类比猜想出分式的基本性质.

五、例题讲解

P7例2.填空:

[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.

P11例3.约分:

[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.

P11例4.通分:

[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.

(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.

, , , , 。

[分析]每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分式的值不变.

解: = , = , = , = , = 。

六、随堂练习

1.填空:

(1) = (2) =

(3) = (4) =

2.约分:

(1) (2) (3) (4)

3.通分:

(1) 和 (2) 和

(3) 和 (4) 和

4.不改变分式的值,使下列分式的分子和分母都不含“-”号.

(1) (2) (3) (4)

七、课后练习

1.判断下列约分是否正确:

(1) = (2) =

(3) =0

2.通分:

(1) 和 (2) 和

3.不改变分式的值,使分子第一项系数为正,分式本身不带“-”号.

(1) (2)

八、答案:

六、1.(1)2x (2) 4b (3) bn+n (4)x+y

2.(1) (2) (3) (4)-2(x-y)2

3.通分:

(1) = , =

(2) = , =

(3) = =

(4) = =

4.(1) (2) (3) (4)

初中数学教案三

一、教材内容

人民教育出版社《义务教育课程标准实验教科书数学》六年级下册第2~4页例1、例2。

二、教学目标

1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。

2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。

3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。

三、教学重、难点

认识负数的意义。

四、教学过程

(一)谈话交流

谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(课件播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的现象吗?

(二)教学新知

1.表示相反意义的量

(1)引入实例

谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(课件出示)。

① 六年级上学期转来6人,本学期转走6人。

② 张阿姨做生意,二月份盈利1500元,三月份亏损200元。

③ 与标准体重比,小明重了2.5千克,小华轻了 1.8千克。

④ 一个蓄水池夏季水位上升米,冬季水位下降米。

指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补充板书:相反意义的量。)

(2)尝试

怎样用数学方式来表示这些相反意义的量呢?

请同学们选择一例,试着写出表示方法。

……

(3)展示交流

……

2.认识正、负数

(1)引入正、负数

谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6 -6),这种表示方法和数学上是完全一致的。

介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。

“-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。

像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。

(2)试一试

请你用正、负数来表示出其它几组相反意义的量。

写完后,交流、检查。

3.联系实际,加深认识

(1)说一说存折上的数各表示什么?(教学例2。)

(2)联系生活实际举出一组相反意义的量,并用正、负数来表示。

① 同桌交流。

② 全班交流。根据学生发言板书。

这样的正、负数能写完吗?(板书:… …)

强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。

4.进一步认识“0”

(1)看一看、读一读

谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气温情况(课件出示)。

哈尔滨: -18 ℃~-5 ℃

北京: -6 ℃~6 ℃

深圳: 15 ℃~25 ℃

温度中有正数也有负数,请把负数读出来。

(2)找一找、说一说

我们来看首都北京当天的温度,“-5 ℃”读作:“负五摄氏度”或“负五度”,表示零下5度;5 ℃又表示什么?

你能在温度计上找出这两个温度所在的刻度吗?(课件出示温度计,没有刻度数)为什么?

现在你能很快找出来吗?(给出温度计的刻度数,生到前面指。)

说一说,你怎么这么快就找到了?

(课件配合演示:先找0℃,在它的下面找-5℃,在它的上面找5℃。)

你能很快找到12 ℃、-3 ℃吗?

(3)提升认识

请学生观察温度计,说一说有什么发现?

在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)

“0”是正数,还是负数呢?

在学生发言的基础上,强调:“0”作为正数和负数的分界点,它既不是正数也不是负数。

(4)总结归纳

如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对“数”进行重新分类:

5.练一练

读一读,填一填。

6.出示课题

同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今天的数学课定一个课题吗?

根据学生的回答总结本节课所学内容,并选择板书课题:认识负数。

关键词:
分享:
x 广告
x 广告

Copyright   2015-2022 魔方网版权所有  备案号:京ICP备2022018928号-48   联系邮箱:315 54 11 85 @ qq.com